
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 403
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Gunay Karlı, Ena Kurtovic
1Faculty of Engineering and IT, Department of IT, Sarajevo, Bosnia and Herzegovina

Abstract— As technology improves, there is an ever-growing demand for better quality games and the Android, being the
fastest growing platform in recent history is no exception. Mobile gaming is becoming an increasingly popular past-time
and as such, it's a constantly evolving field. This research has brought to light the possibilities and hurdles of developing
games on the Android, mostly centered around the issue of input and lack of tactile feedback, perhaps the most glaring
problem new developers face. Furthermore, the huge variety in screen sizes and resolutions, their implications and
problems they create were discussed. Several game engines that support Android have been explored and compared; and
finally through a case-study game using the Unity Engine, a working prototype was developed, demonstrating solutions to
some of the common pitfalls in the development pipeline.

Index Terms— Mobile, gaming, platform, enigins, Android,Unity Engine, computer graphics,

—————————— ——————————

1 INTRODUCTION
Gaming is perhaps the fastest booming industry in the world to-
day. In just under 20 years, we have moved from simple 8-bit
sprites to nigh-photorealistic images rendered in real time on a
home PC system, as briefly discussed in “Sprite Graphics” [3] .
While this transition can easily be attributed to the increase in
processing power, that is not the only culprit. Aside from tech-
nical improvements made over the year, developers have also
improved techniques to allow for a much more robust and
streamlined development approach [1] [2] [3] .

While that sounds great on paper, the reality is that im-
provements in technology bring with them an increase in overall
complexity, and the ever-increasing user demands, especially in
graphical quality, make technique improvements a race against
hardware improvements. All that is still only centered around the
PC, yet the single biggest factor that makes game development
such a technically challenging matter is the sheer number of plat-
forms - since its inception, gaming has been split into PC and
console gaming, the two requiring radically different approaches
[2], as each of the handful of platforms had its own sets of limita-
tions, requirements and development cycles [4].

Fast forward 20 years into the future and "a handful of
platforms" became "a dozen platforms", with Windows, Mac and
Linux systems being present on the PC side, while the console
market is split into the big three - Nintendo, Microsoft and Sony.
However, we have also seen the rise of another "gaming catego-
ry", namely handheld games. It pioneered with Nintendo's
GameBoy, and has been present in one way or another over the
years.Here is where things get interesting - insofar, the PC has
been the only general-purpose platform, meaning that it was the
only one that could do things other than gaming. This allowed the
rest of the crew to get away with lower hardware requirements,
making them more affordable and easier to work with (with a few
exceptions).Thus we reached smartphones - the single biggest
advancement in mobile computing of the decade. The last 3 years
saw an explosion of smartphone popularity and the development
advances that come with it. Today, there are two leading plat-
forms on the market - Apple's iOS and Google's Android [4] [5].

Lastly, the developer can choose the level of .NET sup-

port, as well as the amount of byte stripping. Both can reduce the
file size of the final .apk, but can also create compatibility issues.
With the recent application size increase on the market, these are
pretty much obsolete and should only be considered if the final
.apk is reaching just above 50MB, and one wants to avoid the
additional expansion files [17].

1.1. GAME DEVELOPMENT

Game development is very different from traditional ap-
plication development due to the fact that games require content
while traditional applications are mostly tools. Developing a vid-
eo editor such as Adobe After Effects, for example, is done pretty
"close to the chest", with all departments working on the various
modules that deal with editing video. Game development in com-
parison is a more layer-based process. Care has to be placed on
every part on the development pipeline separately, including but
not limited to, engine development, gameplay development, in-
terface design, sound and music design, voice recording, audio
programming, user input, modeling, texturing, animation, story
and dialogue writing, etc.

1.2. ANDROID MARKET
The Android Market (Renamed to Google Play Store

[18] at the time of writing) has joined platforms such as the Apple
Market [18] and Steam [16] [18] with its unprecedented ability
to cut out publishing companies from a game's development
lifecycle. An extremely cheap publishing license allows develop-
ers to get their work out very quickly and efficiently, push up-
dates at their own pace and have complete statistical insight into
their product. This allows individuals or small companies to easi-
ly get their work out to the masses.

It goes without saying that the system is not flawless -
saturation being the biggest problem of the bunch. Technically
speaking, the internet as a whole could serve a similar purpose as
the market - upload your game and it is there for the public to
play. However, without publicity how would anyone find out

Andorid platform and mobile game
development

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 404
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

about it? This issue is creeping into the Android market at an ever
increasing pace. More developers getting their games out is great
for innovation and diversity, but awful for the supply / demand
ratio. Numerous games get uploaded to the Android market every
month, and most of them get very little attention [17] [18] . One
could look at this as more of a filtering mechanism, where the
quality games will rise above the mediocre ones, and that is a
valid interpretation, but arguably the over-saturation of quality
material is only a matter of time as well.

The second issue with the market system is unique to
smartphones - file size limitations. Up until recently, the maxi-
mum application size was 50MB [18]. Most 3D high-end games
however required much more than that, and as such developers
were forced to host game files on a separate server and have their
games download this extra content from inside the application.

However, in March 2012, Google expanded the maxi-
mum market file size to 4GB [18]. The .apk file is still limited to
50MB to ensure secure on-device storage, but developers are
allowed up to 2 expansion files in the format of their choosing,
each up to 2GB big. While this is a huge leap for developers, the
fact that a limit exists in the first place might pose an issue to a
small percentage of games, namely Massive Multiplayer Online
(MMO) games, where expansions and additional content are a
constant occurrence. Even though 4GB sounds ample, many of
today's high-end games are up to 3GBs in size, leaving prospec-
tive MMO games only 1GB left for expansion. Games such as
these would be required to still host their game data as an in-
application download [18] .

2. METARIAL AND METHODS

Before dwelling deeper into the design of the case study
game, it is important to mention Android activities, OpenGL con-
texts, what they are and how Unity handles them. In simple
terms, an Android activity can be looked at as a process thread.
The email application, when opened, creates an activity. Tapping
the "compose" button brings up the compose dialog on top of the
inbox. That dialog is a new activity, and the inbox activity, now
obscured, is stopped. If an activity is now called on top of the
compose mail dialog, but does not obscure it completely (like a
small confirmation window), the dialog below is paused. If An-
droid requires memory, it clears stopped activities, re-activating
them once they become visible [6]. In the case of extreme
memory shortage, paused activities can be cleared from the
memory. This is very similar to how contemporary operating sys-
tems handle process swapping and scheduling [6] [7] [8] [9].
2.2. Platforms and Devices
Android is a mobile operating system designed and developed by
Google, based on Java [10]. However, it is also open-source,
meaning that after licensing Android, a mobile phone manufac-
turer will implement features of his own. This leads to numerous
problems, most notable being compatibility issues that can arise.
However, a less prominent issue is the fact that it sometimes
takes months for those same manufacturers to push updates onto
their Android builds. Bug fixes and Android upgrades are infre-
quent and slow [8] [13] [14].This is further complicated by the
mentality of people who think of their Android devices as tradi-

tional phones (for the sake of simplicity, tablets are not men-
tioned), and never bother to update even if an update is present.

On the side of hardware variety, Android devices are

shipped with a specific configuration and cannot be upgraded,
meaning that developers need to consider a wider spectrum of
configurations when developing their game in order to make sure
it runs smoothly on as many devices as possible. As previously
discussed, aspect ratios are another important factor that needs to
be taken into account, adding yet another layer of complexity.
While Android offers automatic methods to stretch activities to
match screen resolutions, aspect ratios in games have to be con-
strained most of the time

Fig. 2.2 A pie-chart showing a breakdown of the various Android
versions as of June 2012 [12].

2.3. SYSTEM DESIGN
In theory, this can be used to create the different sections

of the game - menus, levels, pause screens etc. but in practice,
and in Unity, the entire game is one single activity. The reason
becomes apparent when the OpenGL context is considered. In
short, the OpenGL context is equivalent to the Java Virtual Ma-
chine, in terms that it contains all the necessary data for the ren-
dering of the current frame buffer on the screen. Swapping out an
activity destroys the OpenGL context, and it would later on have
to be re-constructed from scratch, a very expensive operation.

Using a single context also means that Android would
not cache any activities. The reduction in asset loading and sav-

ing also helps performance a great deal. In general, the concept of
activities does not map well to games.As far as version require-
ments are concerned, modern games should choose a minimum

Android version of 2.3.3. (Gingerbread), ARMv7 devices (Mean-
ing the game will only show up in the market to devices that sup-

port Unity Android) and OpenGL ES 2.0, which unlike its 1.x
counterpart supports modern shaders.

3. RESULTS AND DISCUSSION

The case study game will be a puzzle game, centered
around reflecting a laser beam across the field by using rotating

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 405
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

and moving mirrors as well as portals. Once the beam reaches its
target destination, a victory text is shown in the middle of the
screen and the game ends. The main challenge of the game is
figuring out the correct configuration of the elements required to
lead the laser to its target destination [14].

3.1. CONCEPT

 This is further enhanced by the fact that the player does
not have a complete overview of the "grid" due to a limited
viewport, thus he has to make mental notes of mirrors or portals
he can not see. Some of the features that this case study will
cover are touch screen camera control, accurately tapping objects,
isometric camera boundaries, transparent texture shaders and
positioning of UI elements on the variable sized screens.
The game will consist of the following elements: laser beam,
source of the laser beam, mirrors that rotate on touch , mirrors
that can be moved by touching them and selecting a direction,
path constraints for moving mirrors, pairs of portals that transmit
the laser from one point to another and can rotate on touch , static
ground plane, camera constraint plane and a single camera acting
as the viewport.
Calculations related to movement will be simple, as the elements
will be laid out in a grid, with mirrors facing 1 out of 4 pre-
determined angles: 45°, 135°, 225°, 315°. Portals have the same
constraint, but their angles are shifted by 45°, Figure 3.1. In plain
terms, mirrors can face diagonal directions and portals can face
straight directions.

Fig. 3.1 The possible angular positions of mirrors (left) and por-
tals (right) along with the possible laser directions coming in and

out of them (red line).
Reflecting the laser around will be done via a trick - all

elements, mirrors and portals will be able to emit the laser under
the condition that an incoming beam is hitting them from the cor-
rect direction, i.e. the beam will no reflected, no reflection calcu-
lation will be necessary. Every element that reflects is actually an
emitter that emits under certain conditions (being hit by a beam
from a certain direction). Both the direction of the incoming
beam and the angle of the mirror / portal being hit have to be
checked to determine if the incoming laser is being reflected or
not. Unity supports line renderers (used to draw the laser) that
have several joints facing different directions, and those joints
can be dynamically created and removed, but that approach

would require sequentially re-calculating the line from start to
finish each time a mirror or portal is adjusted, which can become
quite time consuming if there are more than a few dozen ele-
ments in a given stage. The separate-lines approach allows for
easier debugging and better portability.Special care has to be
made in cases when there are two mirrors facing in opposite di-
rections, as they can have two different configurations in which
they reflect the beam (vertical and horizontal, see Figure 3.1.).
This is why it is necessary to check the coordinate difference
between the "source" and "target" mirror as well as their rotation.

Fig. 3.2. Mirrors 1-2 are positioned horizontally (blue), while
mirrors 2-3 are positioned vertically (green). Despite mirrors 1
and 3 being identical, the resulting reflection is different.

3.2. SYSTEM IMPLEMENTATION

 Before diving deeper into the Unity Editor and specific
code implementation of Mirror Game, an understanding of a few
terms is required.Prefabs, stemming from the word "prefabricat-
ed" are complete game objects, be it static or dynamic, that are
present as available resources in the project. Objects present in
levels are instances of prefabs. Changing a prefab will mirror that
change onto every instance of the prefab. A scene does not neces-
sarily denote a new level, a scene can also be the main menu, or
the scoreboard. Parents and Children are groups of objects in
which changes to the transformation of the parent also affects the
transformation of all its children. This is not true the other way
around. Last but not least, transformation is the current position,
scale and rotation of an object [10] [11].

3.2.1.CODING

The most importantt part of developing Mirror Game was the
laser emitter. This would be the actual game object that would
produce the laser beam. It would be attached to the laser source
object (which is nothing but a container model) as well as each
mirror and portal, Figure 4.3.

Fig. 3.2.2. The various objects with laser emitters attached to
them.

The three crucial things that make up the laser emitter

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 406
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

are the LaserScope shader, the LaserScope script and the Per-
FrameRaycast script.The LaserScope.shader script takes two ar-
guments - the main texture, in this case a solid color, and the
noise texture, used to create the diffuse effect around the laser.

The concept is as follows - "shoot" a vector, or ray
(Physics.Raycast) into a certain direction (transform.forward). If
the ray hits something, store the resulting RaycastHit information
into a variable (hitInfo). The ray travels a maximum distance of
50 and will collide with all objects except those in layer 8.The
last bit requires some explanation on how layer masks work. The

optional final argument of the Raycast() method takes a layer
mask, which is nothing but a bitmap telling the method which
layers to include or not include in its collision tests. A layer mask
that simply says 1 would mean "collide with objects in the first
layer only", 10 would mean "objects in second layer only", 1000
is "fourth layer" and so forth.
In this case, the layer mask is created via the bitwise << operator.
The given command, 1<<8 reads "1 shifted to the left 8 places",
resulting in 10000000. Finally, the inverse operator (~) is applied
to the result, bringing the final bitmap to 01111111. This reads as
"all layers except for layer 8". This layer contains the Path ob-
jects, which are used later on to set the boundaries for movable
mirrors.The final script, LaserScope, controls all of the laser log-
ic. First thing to note is that in the Unity editor, scripts can be

easily attached to objects by dragging and dropping. Once at-
tached, those scripts become components. Those components can
be referenced in other scripts like this:

First off, once the laser is initialized, an animation rou-
tine has to be determined in order to give the laser a smooth dif-
fuse animation.

This does nothing more but constantly randomize the
animation direction and width of the laser by small steps each
frame. The yield command is a special kind of return that ensures
that the next time the method is called (once per frame), it will
continue from the yield statement. This script, like most other
object scripts in the project, has an Update() method. This is a
special method that is called once every frame. So if the game
runs at 60 frames per second (fps), Update() is called 60 times
every second. This is the "main function" of every object. In this
particular Update() method, the first thing performed is a condi-
tion check:

The isOn flag is a simple boolean variable which is trig-

gered based on whether or not the laser emitter is supposed to
emit at the current moment. The isTurning boolean is used to
check whether or not a mirror or portal is in the process of rotat-
ing / moving, during which time all the lasers turn off and user
input is temporarily suspended.The next few lines call the render-
er object, a component of every drawable object in Unity. The
first line enables it, i.e. the laser emitter in question becomes vis-
ible. The next 5 lines simply control the various random anima-
tion components. The most notable one of those is the one calling
the lRenderer variable, which is short for Line Renderer. As dis-
cussed in 3.a, line renderers are used to render lines, or in this
case lasers.
The next task is to check if the freshly enabled laser is hitting
anything.

As seen above, the PerFrameRaycast component has
been stored in the raycast variable, which can now be used to

access it. Since PerFrameRaycast returns a RaycastHit object,
that is stored in the hitInfo variable. If the ray did not hit any-
thing, this will result in a NULL object returning, so it can easily
be checked whether or not there was a hit.The next two lines
simply handle the scaling of the two textures used in the laser
material, making sure they are properly tiled, not stretched,
across the length of the laser.In case the laser did not hit anything,
the only thing that needs to be done is give the SetPosition()

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 407
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

method a maxDistance variable instead of the collision dis-
tance.Now that the emitter knows that it hit something though, it

has to figure out what the object it hits is.

First off, it checks for mirrors (Both rotating and moving
ones). Three things need to be examined - the Y-axis rotation
(referred to as simply rotation henceforth) of the source, the rota-
tion of the target (mirror hit), and in case they are at opposing
angles, their position relative to one another to determine whether
they are in a horizontal or vertical setup. It must be noted that the
models of the mirrors are rotated 45° clockwise, i.e. 45° is their
0° as far Unity is concerned. This works great as it simplifies
calculations and allows for much more natural numbers.

Firstly, it is checked whether the source is at a certain
rotation (in this case 0°). Note that the emitter checks the rotation
of is parent, as it is itself attached to a mirror or portal (this rela-
tion is established by simply drag and dropping one object onto
another in the Unity editor). For the sake of safety, angles are
rounded before checking. Assuming that the source mirror is in-
deed at 0° (i.e. 45°), there are only two possibilities - the laser is
being emitted either to the north or the east.

3.2.3. BUGS AND FIXES
Rotation of models in Maya resulted in incorrect rota-

tion after the models were imported into Unity. Essentially, the
model must remain at (0,0,0) position with a (0,0,0) rotation. Any
modification should be done at a component level.Transparent
textures did not function correctly - the laser appeared as a place-
holder purple material, and several transparent png's had their
transparent areas filled with white. This was due to the technical
requirement of OpenGL ES 2.0 as well as a 32-bit Display Buff-
er.

Path marker detection was not working correctly on sev-
eral occasions, each time sporting a different reason. Firstly, the
culprit was the non-rounding of the post-move coordinates. Just a
bit to both side and the ray detecting the path marker would miss
it altogether. Next time it did not work due to the ray hitting the
path marker the mirror is sitting on at the current moment. This
happened haphazardly and without any coherent pattern, so de-
bugging took longer than the other issues.Perhaps the most an-
noying bug of all was not even directly related to programming
the game, but rather to the Android SDK. Unity is able to compile
and run the game directly on an Android device that is connected
to the PC via USB. However, installing the actual APK file on the
fly kept failing. It is still unclear what caused the bug, but re-
installing the SDK eventually fixed it.

3.2.3. MODELING
For the purpose of this paper, only rudimentary models

have been used, coupled with a few placeholders. However there
are a few notable things that affected further coding that require
mention. Most notably, it is imperative that finished models have
all of their transformation values set to 0 for translation and rota-
tion and 1 for scale. If this is not the case, Unity will translate,

rotate and scale in such a way that the values match those
"origin" values.

Fig. 3.2.3. The model for the movable mirror.

Fig. 3.2.3. The model for the movable mirror.

CONCLUSIONS

Many of the methods looked vastly different in their original in-
ception, and numerous bugs popped up all the time. Just like with
most programming, many of those issues were caused by "doing
it wrong", but the occasional one had its roots set in deeper.

Despite the platform being barely out of its infancy, it is
remarkable how streamlined the development for it is. Simple
concepts and a powerful SDK really allow for a great deal of
creative freedom and flexibility. Even for non-game develop-
ment, the designer can control virtually every aspect of the appli-
cation, how it interacts with the system itself as well as other ap-
plications. None of the engines mentioned in this thesis would
have managed to do what they did if the Android operating sys-
tem itself was not extremely well-written.

The version and (lack of) update issues are slowly being
pushed aside, as the newer versions of Android support nearly all
modern technical game features. Thus it is just a matter of time
until every Android device will be able to run 3D games, the only
restriction being the hardware specifications, much like with PCs.

Also for the end I would like to mention that during this
project and game development process Unreal Unity Engine 4
was lounched and it cuts down on development time and ensures
faster iteration on creative ideas. Howeverm, there is no doubt
that application developing platforms (and technology in general)
are is evolving field of current century.

Finally, in a market dominated by gigantic, faceless
publishers recycling the same ideas and never straying away
from the cookie-cutter status-quo, any venture that allows cre-
ative individuals to show the world what can truly be done
with the medium once conventional notions are tossed out the
window is more than welcome. And this is such a venture.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 408
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

REFERENCES

[1] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos,
Ramesh Govindan, Deborah, Estrin, Diversity in Smartphone Usage, First ed. ,
USA: Microsoft Research, 2008.
[2] Allan Hammershøj, Antonio Sapuppo and Reza Tadayoni , An analysis of
Mobile Operating Systems and Software development platforms , First ed. , Co-
penhagen, Denmark : CMI international conference on social networking and
communities , 2009.
[3] Paul Michael Kilgo, Android OS: A robust, free, open-source operating sys-
tem for mobile devices, Alabama: 2008.
[4] Stephen A. Edwards, Sprite Graphics, First ed. , Columbia: Columbia Univer-
sity, 2010.
[5] Hartmut Schirmacher, Stefan Brabec, A Multi-Site, Multi-Platform System for
Software Development, Firsted. , Hamburg: Max-Planck-Institut fur¨ Informatik,
2000.
[6] Martin Mittring, The Technology Behind the 3D Graphics and Games Course
“Unreal Engine 4 Elemental demo”, Epic Games, Inc., 2012.
[7] Anton Kaplanyan, Light Propagation Volumes in CryEngine 3, First ed. ,
SIGGRAPH, 2009.
[8] Martin Mittring, Bryan Dudash, The Technology Behind the DirectX 11 Un-
real Engine "Samaritan" Demo, Unreal Technology, 2011.
[9] DONALD MUSTARD, INFINITY BLADE H ! INFINITY BLADE H OW
WE MADE WE MADE A HI T,, W HAT W E LEARNED E LEARNED
LEARNED LEARNED,, A ND WH Y YOU CAN DO IT TOO, First ed. , Chair,
2012.
[10] Martin Mittring, Advances in Real-Time Rendering in 3D Graphics and
Games Course , Epic Games, 2012.
[11] Niklas Smedberg, Daniel Wright, Rendering Techniques in Gears of War 2,
First ed. , Epic Games, Inc, 2010.
[12] Will Goldstone, Unity Game Development Essentials, Packt Publishing,
2009.
[13] Renaldas Zioma, iOS and Android - Cross-Platform Challenges and Solu-
tions, First ed. , Unity Technologies, 2012.
[14] A.Mallikarjuna, S.Madhuri , Unveiling of Android Platform , First ed. , In-
dia: International Journal of Advanced Research, 2013.
[15] Masoud Nosrati, Ronak Karimi, Hojat Hasanvand, Mobile Computing: Prin-
ciples, Devices and Operating Systems, First ed. , Iran: WAP journal, 2012.
[16] Victor Matos, Android App Development, Cleveland: Cleveland State Uni-
versity , 2012.
[17] Marko Gargenta, Learning Android, United States of America: O'Reilly
Media, 2011.
[18] App Store Marketing and Advertising Guidelines for Developers, First ed. ,
USA: Apple, 2012.
[19] Martin Wallace, Steam, First ed. , Mayfair Gamer, Inc., 2009.

IJSER

http://www.ijser.org/

	1 Introduction
	1.2. Android Market
	2. METARIAL and METHODS
	2.3. System Design
	3. RESULTS and DISCUSSION
	3.1. Concept
	3.2. System Implementation
	3.2.1.Coding
	3.2.3. Bugs and Fixes
	3.2.3. Modeling
	References

